Changes in the Acuity of Patients Presenting at Emergency Departments and the Propensity of Emergency Departments to Admit Patients

England : 2010/11 to 2015/16

Produced by the Strategy Unit for NHS England

June 2017

1. Introduction

- 1.1. Commissioned by NHS England, this analysis provides information about changes in the acuity profile of patients presenting at emergency departments in England and the propensity of those emergency departments to admit patients to hospital wards.
- 1.2. This analysis builds on a paper, Changes in Admission Thresholds in English Emergency Departments which is being reviewed for publication by the Emergency Medicine Journal. This earlier paper concludes that whilst crude admission rates via EDs changed little between 2010 and 2015, casemix-adjusted admission rates reduced considerably. Furthermore the paper found that average acuity of attendances had increased over the same period.

1.3. This analysis:

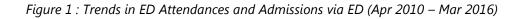
- extends the time period of the earlier work by 12 months. i.e. up to 31st March 2016
- enhances the casemix adjustment methods by including information on patient travel times
- adjusts the formulation of a number of the casemix-adjustment variables
- includes a preliminary assessment of whether the models developed to assess changes in admission thresholds over time can also be used to compare admission thresholds between hospitals.
- 1.4. The analysis uses the Hospital Episode Statistics for Accident and Emergency Departments for the six year period from 1st April 2010 to 31st March 2016. Pseudonymised extracts of these datasets were supplied by NHS Digital under a suitable Data Sharing Agreement. The analysis has been conducted using Microsoft SQL Server 2012 and R v3.3.2. Travel times for patient attendances were supplied by NHS England.
- 1.5. Further information about this project can be obtained from Steven Wyatt, Head of Strategic Analytics, the Strategy Unit (email : swyatt@nhs.net).

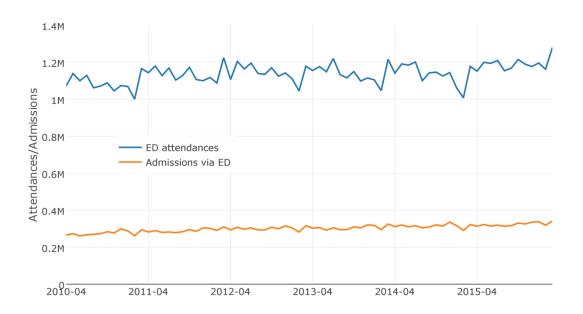
2. Key Findings

- 2.1. Attendances at consultant-led emergency departments rose by 1.9% per annum from 13.0 million attendances in 2010/11 to 14.3 million attendances in 2015/16. The number of admissions via ED increased at a marginally faster rate from 3.3 million to 3.9 million.
- 2.2. Over this period, children (0-17 years) made up 23.6% and older adults (75+ years) 14.2% of attendances. 48.6% of attendances did not contain a valid diagnosis, but of those that did the most common presenting diagnoses were for dislocation/fracture/joint injury/amputation, gastrointestinal conditions, sprain/ligament injury, respiratory conditions, laceration and soft tissue inflammation.
- 2.3. For patients attending emergency departments, the risk of admission varies systematically with reference to the patient's age, gender, ethnicity, deprivation and presenting diagnosis. Other factors such as the season, day of week and hour of day of attendance, arrival mode, journey time, ED provider and the patient's previous ED attendances and admissions also play a part. Diagnosis, age and arrival mode have the biggest impact on whether a patient is admitted.
- 2.4. Having accounted for all these factors;
 - the odds of admission decrease with age in children but increase with age in adults
 - men are marginally more likely to be admitted than women
 - children in affluent areas are slightly more likely than children from deprived areas to be admitted. No such gradient exists for adults.
 - white people are more likely to be admitted than those from other ethnic groups
 - the odds of admission vary greatly by diagnosis, with septicaemia presenting the greatest risk of admission.
 - patients attending during the night, on weekends and in the winter are less likely to be admitted than patients attending at other times.
 - patients that have previously attended and been admitted are more likely to be admitted if re-presenting at ED within one month and to a lesser extent within one year.
 - the longer the journey that patients take to get to ED, the more likely they are to be admitted.
- 2.5. Having accounting for changes in casemix, the odds of admission reduced by 22% for ambulance-conveyed children, 35% for child walk-ins, 33% for ambulance conveyed adults and by 30% for adult walk-ins between 2010/11 and 2015/16.
- 2.6. Although these inferences are based on a subset of providers that record patient diagnoses at consistently high rates, it would not be unreasonable to conclude that these findings extend to all English emergency departments since the subset of providers are similar in profile to all providers in terms of size, location, rurality etc.
- 2.7. Many of the attendance characteristics that have grown at the fastest rate between 2010/11 and 2015/16 are also those that have the greatest odds of admission. In particular there has

been faster growth in those aged under 5 and over 75 years, in those travelling more than 20 minutes to ED, in those with septicaemia, visceral injuries, CNS and respiratory conditions and those that had previously been admitted via ED; characteristics that carry higher odds of admission. At the same time there have been reductions in the frequency of attendances for lacerations, contusions/abrasions, sprains/ligament injuries, burns/scalds and bites/stings which carry lower odds of admission.

- 2.8. This weak positive relationship between growth and odds of admission signals a slow upward drift in the average acuity of patients attending ED.
- 2.9. A preliminary assessment indicates evidence of non-constant risks between providers. This suggests that the models used to assess trends in admission thresholds and patient acuity over time should not be used to compare the admission thresholds between providers.


- 3. Describing Emergency Department attendances
 - 3.1. Circa 82 million ED attendances constitute the study population for this analysis. This represents all attendances between 1st April 2010 and 31st March 2016 at English Emergency Departments meeting the following design and data quality criteria.


<u>design criteria</u>

- attendance at consultant-led ED
- not brought in dead & did not die in the department
- did not leave before being seen or having refused treatment
- not a follow-up attendance <u>data quality criteria</u>
- valid disposal code
- valid arrival mode code
- valid gender
- valid age
- valid Lower Super output Area

Note that the data quality criteria exclude only 2.2% of attendances meeting the design criteria.

3.2. Figure 1 shows the trend in ED attendances and admissions via ED over this period. On average attendances at consultant-led emergency departments rose by 1.9% per annum from 13.0 million attendances in 2010/11 to 14.3 million attendances in 2015/16. The number of admissions via ED increased at a marginally faster rate from 3.3 million to 3.9 million.

3.3. Tables 1 and 2, set out the patient characteristics and their presenting diagnoses. Over the period between April 2010 and March 2016, children (0-17 years) made up 23.6% and older

adults (75+ years) 14.2% of attendances. 48.6% of attendances did not contain a valid diagnosis, but of those that did the most common presenting diagnoses were for dislocation/fracture/joint injury/amputation, gastrointestinal conditions, sprain/ligament injury, respiratory conditions, laceration and soft tissue inflammation.

Characteristic	Subgroup	Frequency	Percent
Age Group	0	2,360,060	2.9%
5 1	1-4	6,070,440	7.4%
	5-12	6,332,084	7.7%
	13-17	4,563,756	5.6%
	18-34	20,078,640	24.5%
	35-54	17,662,795	21.5%
	55-74	13,314,446	16.2%
	75+	11,602,532	14.2%
Gender	Male	41,042,728	50.1%
	Female	40,942,025	49.9%

Table 1 : Patient Characteristics of ED Attendances (Apr 2010 – Mar 2016)

Diagnosis	Frequency	Percent
Laceration	2,770,263	3.4%
Contusion/abrasion	2,277,479	2.8%
Soft tissue inflammation	2,608,443	3.2%
Head injury	2,048,863	2.5%
Dislocation/fracture/joint injury/amputation	3,928,157	4.8%
Sprain/ligament injury	3,094,506	3.8%
Muscle/tendon injury	1,133,443	1.4%
Nerve injury	107,479	0.1%
Vascular injury	45,615	0.1%
Burns and scalds	359,766	0.4%
Electric shock	45,608	0.1%
Foreign body	585,160	0.7%
Bites/stings	279,511	0.3%
Poisoning (inc overdose)	812,959	1.0%
Near drowning	6,827	0.0%
Visceral injury	22,968	0.0%
Infectious disease	811,240	1.0%
Local infection	1,086,665	1.3%
Septicaemia	194,492	0.2%
Cardiac conditions	2,288,498	2.8%
Cerebro-vascular conditions	562,945	0.7%
Other vascular conditions	319,351	0.4%
Haematological conditions	200,283	0.2%
Central nervous system conditions	1,333,219	1.6%
Respiratory conditions	2,870,809	3.5%
Gastrointestinal conditions	3,556,842	4.3%
Urological conditions (inc cystitis)	1,491,440	1.8%
Obstetric conditions	237,908	0.3%
Gynaecological conditions	737,865	0.9%
Diabetes/endocrinological conditions	279,201	0.3%
Dermatological conditions	380,907	0.5%
Allergy (inc anaphylaxis)	320,715	0.4%
Facio-maxillary conditions	238,562	0.3%
ENT conditions	1,069,271	1.3%
Psychiatric conditions	663,467	0.8%
Ophthalmological conditions	1,666,458	2.0%
Social problems	189,169	0.2%
Nothing abnormal detected	1,512,190	1.8%
Not classifiable/classified	39,846,209	48.6%

Table 2 Presenting Diagnoses of ED Attendances (Apr 2010 – Mar 2016)

- 4. Understanding the factors that influence whether a patient is admitted
 - 4.1. We estimate a patient's odds of admission having presented at ED using mixed effects logistic regression. This method calculates the odds of admission having taken account of a range of variables associated with the attendance. These variables can be classified as patient characteristics, diagnoses, attendance characteristics and prior hospital activity. Patient characteristics include; age, gender, deprivation, ethnicity. Diagnoses are those medical conditions with which the patient presents. Attendance characteristics include temporal factors (year, season, day of the week, time of day), arrival mode, travel time or distance and the hospital provider. Prior hospital activity takes account of whether patients' had attended ED and/or been admitted via ED in the previous month or year.
 - 4.2. Preliminary analysis provided three important insights. Firstly that all of the above variables warranted inclusion in a multivariate model to estimate the odds of admission. Secondly that the odds of admission varied greatly between adults and children and between ambulance conveyed and other (walk-in) attendances. And finally that presenting diagnosis is the single most important predictor of admission such that models that did not include the patient's presenting diagnosis had limited predictive capability.
 - 4.3. As a result, stratified models were developed for four attendance cohorts; children (aged 0-17 years) conveyed to ED via ambulance, children arriving at hospital by other means (child walk-in), adults conveyed by ambulance and adults arriving at hospital by other means (adult walk-in). Given that many ED providers record patient diagnosis poorly, models were developed based on a subset of providers that record the diagnosis of at least 70% of patients attending ED in each of the six years of the study. 46 providers met this criterion (see appendix A). Table 3 sets out the variables used to construct each of the four models.
 - 4.4. The use of a subset of providers to identify the characteristics associated with increased risks of admission, introduces the potential for bias. Although not conclusive, table 4 below provides some reassurance that the subset of providers that record presenting diagnosis above the agreed threshold are broadly similar to all other hospitals in terms of size, geographic distribution, rurality, trauma centre status and change in bed numbers.
 - 4.5. The model covariates and coefficients are shown in figure 2 below and in appendix B. Having accounted for differences in casemix, these results indicate that;
 - the odds of admission decrease with age in children but increase with age in adults
 - men are marginally more likely to be admitted than women
 - children in affluent areas are slightly more likely than children from deprived areas to be admitted. No such gradient exists for adults.
 - white people are more likely to be admitted than those from other ethnic groups
 - the odds of admission vary greatly by diagnosis, with septicaemia presenting the greatest risk of admission.
 - patients attending during the night, on weekends and in the winter are less likely to be admitted than patients attending at other times.

- patients that have previously attended and been admitted are more likely to be admitted if re-presenting at ED within one month and to a lesser extent within one year.
- the longer the journey that patients take to get to ED, the more likely they are to be admitted.

Variable	Levels (design variables)	Variable type
Age Group	0, 1-4, 5-12, 13-17, 18-34, 35-54, 55-74, 75+	Fixed effect
Gender	male, female	Fixed effect
Index of Multiple	Quintile 1 (most deprived), Quintile 2, Quintile 3,	Fixed effect
Deprivation (2004)	Quintile 4, Quintile 5	
Ethnic group	White, Asian, Black, Mixed Heritage, other ethnic	Fixed effect
	group, not known/not stated	
Diagnoses	laceration, contusion/abrasion, soft tissue	Fixed effect
	inflammation, head injury,	
	dislocation/fracture/joint injury/amputation,	
	sprain/ligament injury, muscle/tendon injury,	
	nerve injury, vascular injury, burns and scalds,	
	electric shock,	
	foreign body, bites/stings,	
	poisoning (inc overdose), near drowning, visceral	
	injury, infectious disease,	
	local infection, septicaemia, cardiac conditions,	
	cerebro-vascular conditions, other vascular	
	conditions, haematological conditions, central	
	nervous system conditions, respiratory conditions,	
	gastrointestinal conditions, urological conditions	
	(inc cystitis), obstetric conditions, gynaecological	
	conditions, diabetes/endocrinological conditions,	
	dermatological conditions, allergy (inc	
	anaphylaxis), facio-maxillary conditions, ENT	
	conditions, psychiatric conditions,	
	ophthalmological conditions, social problems,	
	nothing abnormal detected, not	
	classifiable/classified	
Arrival Month	Winter (Nov-Feb), Summer	Fixed effect
Arrival day	weekday, weekend	Fixed effect
Arrival hour	day (8am-10pm), night (10pm-8am)	Fixed effect
Travel time	0-4, 5-9, 10-14, 15-20, 25-29, 30+	Fixed effect
(minutes)		
Prior Activity	attended ED and admitted, attended not	Fixed effect
(28 days)	admitted, none	
Prior Activity	attended ED and admitted, attended not	Fixed effect
(29-365 days)	admitted, none	
Provider	46 providers. See appendix A for full list	Random effect

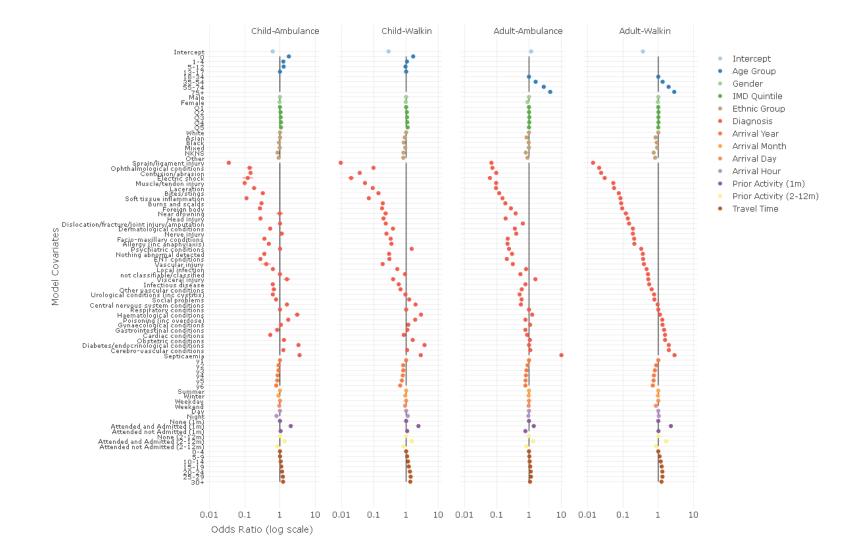

Table 3 : Model Variables and Levels

Table 4 : Provider Characteristics

	Selected (n=4		All Trusts with (n=1	
Region				
Eastern	7	(16%)	17	(12%)
London	2	(4%)	21	(14%)
North West	10	(22%)	23	(16%)
Northern and Yorkshire	7	(16%)	17	(12%)
South East	7	(16%)	22	(15%)
South West	4	(9%)	17	(12%)
Trent	4	(9%)	12	(8%)
West Midlands	4	(9%)	16	(11%)
Number of attendances 2014/15				
0-49,999	6	(13%)	10	(7%)
50-99,999	20	(44%)	65	(45%)
100-149,999	17	(38%)	53	(37%)
150-199,999	1	(2%)	9	(6%)
200-249,999	1	(2%)	6	(4%)
250,000+	0	(0%)	2	(1%)
% Patients from urban areas				
>= 0% and <25%	0	(0%)	0	(0%)
>= 25% and <50%	3	(7%)	6	(4%)
>=5 0% and <75%	11	(24%)	34	(23%)
>= 75% and <=100%	31	(69%)	105	(72%)
Major Trauma Centre				
Yes	7	(16%)	28	(19%)
No	38	(84%)	117	(81%)
General & Acute Beds Available				
Q4 2010-11	29,145		100,346	
Q4 2014-15	29,232		100,977	
% change	0.3%		0.6%	
General & Acute Beds Occupied				
04 2010-11	25 623		88 823	

	•	
Q4 2010-11	25,623	88,823
Q4 2014-15	26,348	91,755
% change	2.8%	3.3%

Figure 2 : Model Covariates and Odds Ratios

4.6. Table 4 and figure 3 show the trends in adjusted and unadjusted odds of admission between year 1 (1st April 2010 – 31st March 2011) and year 6 (1st April 2015 – 31st March 2016). Whilst the unadjusted odds of admission have changed little over the 6 year period, the adjusted odds of admission have reduced in all four cohorts. Between 2010/11 and 2015/16, the casemix-adjusted odds of admission reduced by 22% for ambulance-conveyed children, 35% for child walk-ins, 33% for ambulance conveyed adults conveyed and by 30% for adult walk-ins.

Cohort	Year	Unadjust	ted OR (95% CI)	Adjuste	d OR (95% CI)
Child Ambulance	2010/11 (ref)	1.00	-	1.00	-
	2011/12	1.03	(1.01,1.05)	0.91	(0.89,0.93)
	2012/13	1.11	(1.09,1.13)	0.91	(0.89,0.93)
	2013/14	1.07	(1.05,1.09)	0.86	(0.84,0.87)
	2014/15	1.08	(1.06, 1.10)	0.84	(0.82,0.86)
	2015/16	1.04	(1.02,1.06)	0.78	(0.77,0.80)
Child Walk-in	2010/11 (ref)	1.00	-	1.00	-
	2011/12	0.87	(0.86,0.87)	0.81	(0.80,0.82)
	2012/13	0.96	(0.95,0.97)	0.81	(0.80,0.82)
	2013/14	0.92	(0.91,0.93)	0.79	(0.78,0.79)
	2014/15	0.91	(0.90,0.92)	0.74	(0.73,0.75)
	2015/16	0.83	(0.83,0.84)	0.65	(0.65,0.66)
Adult Ambulance	2010/11 (ref)	1.00	-	1.00	-
	2011/12	1.01	(1.00,1.01)	0.91	(0.90,0.91)
	2012/13	1.01	(1.00,1.02)	0.83	(0.83,0.84)
	2013/14	0.97	(0.97,0.98)	0.80	(0.80,0.81)
	2014/15	1.01	(1.01,1.02)	0.78	(0.78,0.79)
	2015/16	1.01	(1.01,1.02)	0.77	(0.77,0.78)
Adult Walk-in	2010/11 (ref)	1.00	-	1.00	-
	2011/12	0.99	(0.99,1.00)	0.87	(0.86,0.88)
	2012/13	1.02	(1.02,1.03)	0.80	(0.79,0.80)
	2013/14	0.98	(0.98,0.99)	0.75	(0.75,0.76)
	2014/15	1.01	(1.00, 1.01)	0.74	(0.73,0.74)
	2015/16	1.00	(1.00,1.01)	0.70	(0.69,0.70)

Table 4 : Adjusted and Unadjusted Odds of Admission by Year

- 4.7. For adults, the greatest reductions in casemix-adjusted odds of admission were seen in the first half of the study period, with reductions slowing in later years. In contrast, the odds of admissions for children saw the great reductions in the first and last years of the study period.
- 4.8. C-statistics, ROC curves and calibration plots for each of the 4 models are provided in appendix C.

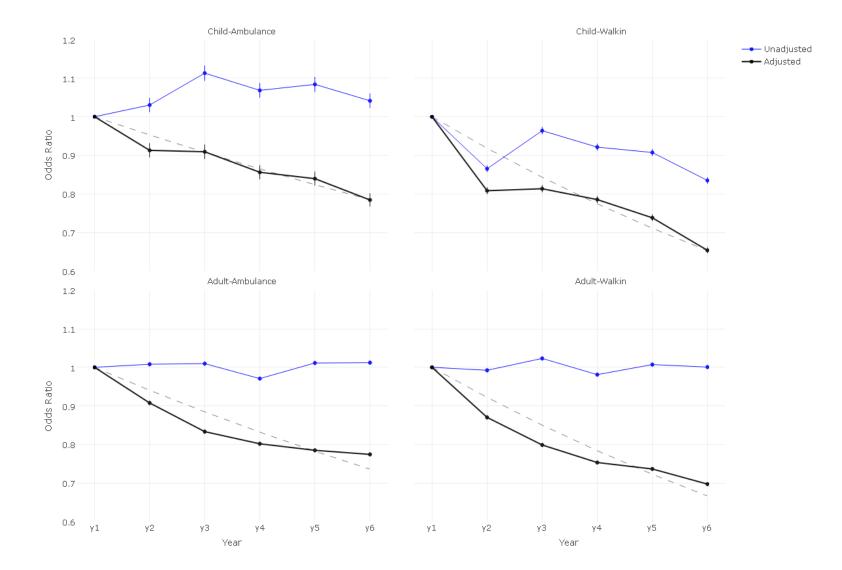


Figure 3 : Adusted and Unadjusted Odds of Admission by Year (Apr 2010 – Mar 2011 to Apr 2015 – Mar 2016)

- 5. Changes in frequency of patient and attendance characteristics
 - 5.1. Table 5 below shows the frequency of patient characteristics for ED attendances between April 2010 and March 2016 and the rate at which attendances with those characteristics have changed over the six year period. Figures are supplied for all providers and for the subgroup of providers* with consistently high levels of diagnosis recording that was used to construct the models.

		all pro	provider subgroup*		
Characteristic	Subgroup	Frequency	Growth p.a.	Frequency	Growth p.a.
Age Group	0	2,360,060	1.2%	575,994	2.6%
5	1-4	6,070,440	1.4%	1,582,220	2.9%
	5-9	6,332,084	0.9%	1,747,592	1.5%
	13-17	4,563,756	-2.7%	1,313,474	-2.1%
	18-34	20,078,640	0.2%	5,293,807	1.6%
	35-54	17,662,795	0.6%	4,767,450	1.5%
	55-74	13,314,446	3.1%	3,805,714	4.1%
	75+	11,602,532	4.2%	3,351,512	4.8%
Gender	Male	41,042,728	0.7%	11,256,481	1.6%
	Female	40,942,025	1.9%	11,181,282	3.1%
IMD Quintile	Q1	23,201,534	0.7%	6,113,778	2.1%
-	Q2	18,238,315	1.0%	4,573,907	2.5%
	Q3	15,100,881	1.5%	4,285,887	2.7%
	Q4	13,367,671	1.9%	4,037,551	2.3%
	Q5	12,076,352	2.2%	3,426,640	2.1%
	White	50,379,563	22.5%	15,136,209	20.9%
Ethnic Group	Asian	4,514,965	18.9%	728,478	37.0%
	Black	2,735,444	18.4%	258,270	34.8%
	Mixed	984,220	24.6%	180,709	28.6%
	Other	2,051,401	26.3%	331,527	27.5%
	Not known/stated	21,319,160	-30.4%	5,802,570	-30.3%

Table 5 : Frequency and Growth of Patient Characteristics (Apr 2010 – Mar 2016)

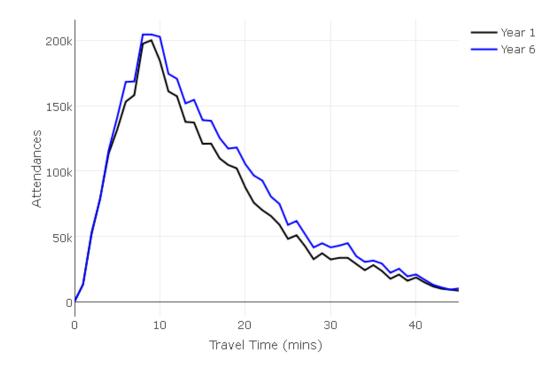
5.2. The greatest increases are seen in attendances of those aged under 5 years, those aged over 55 years and in women. Attendances of older children and young adults have reduced. Improvements in ethnicity recording are also evident.

Figure 4 : Age Profile of ED Attenders Apr 2010-Mar 2011 and Apr 2015-Mar 2016

- 5.3. Table 6 provides information about the frequency and growth of presenting diagnoses. For the subset of providers with consistently high levels of diagnosis recording, the diagnoses seeing the greatest level of growth in absolute terms were ophthalmological, gastro-intestinal, cardiac, respiratory and urological conditions. The diagnoses with the greatest reductions were sprains/ligament injuries, head injuries, lacerations, contusions/abrasions and local infections.
- 5.4. Table 6 also indicates rapid growth in diagnoses of septicaemia/sepsis during the study period reflecting efforts to improve the identification of this condition in ED. This introduces the possibility that the average acuity of sepsis cases has fallen during the study period. Although a diagnosis of sepsis remains relatively uncommon, representing only 0.2% of all attendances between April 2010 and March 2016, the odds ratios of admission for this diagnosis are particularly high, increasing the leverage of this subset of attendances on the model results as a whole. A sensitivity analysis was conducted, estimating the parameters in the adult walk-in model having excluded the sepsis cases.¹ This demonstrated that the increased identification of sepsis cases did not materially alter the headline conclusion from chapter 4; that having adjusted for casemix, patients were considerably less likely to be admitted in 2015/16 than in 20110/11.

¹ For convenience, this sensitivity analysis was based on the models fixed effects only.

	all pro	oviders	provider	subgroup
Diagnosis	Frequency	Growth p.a.	Frequency	Growth p.a.
Laceration	2,770,263	-2.7%	1,304,860	-2.7%
Contusion/abrasion	2,277,479	-1.7%	1,093,725	-2.6%
Soft tissue inflammation	2,608,443	-0.7%	931,333	0.6%
Head injury	2,048,863	0.2%	972,850	-4.6%
Dislocation/fracture/joint				
injury/amputation	3,928,157	0.3%	1,812,212	-0.4%
Sprain/ligament injury	3,094,506	-1.6%	1,501,928	-4.2%
Muscle/tendon injury	1,133,443	0.3%	637,039	3.3%
Nerve injury	107,479	5.0%	66,017	12.7%
Vascular injury	45,615	1.1%	26,530	-2.4%
Burns and scalds	359,766	-0.3%	143,852	-1.7%
Electric shock	45,608	10.9%	30,282	29.2%
Foreign body	585,160	1.1%	292,522	2.1%
Bites/stings	279,511	-3.9%	132,788	-5.6%
Poisoning (inc overdose)	812,959	5.0%	374,367	3.3%
Near drowning	6,827	-1.7%	5,117	15.2%
Visceral injury	22,968	12.8%	12,020	15.9%
Infectious disease	811,240	18.5%	311,505	17.8%
Local infection	1,086,665	-0.4%	536,201	-3.3%
Septicaemia	194,492	39.6%	105,167	35.1%
Cardiac conditions	2,288,498	6.2%	1,018,586	5.8%
Cerebro-vascular conditions	562,945	0.0%	260,631	-0.4%
Other vascular conditions	319,351	3.3%	137,338	-0.5%
Haematological conditions	200,283	5.7%	81,016	12.9%
Central nervous system conditions	1,333,219	5.5%	561,205	4.8%
Respiratory conditions	2,870,809	4.9%	1,266,217	4.6%
Gastrointestinal conditions	3,556,842	5.7%	1,582,522	4.2%
Urological conditions (inc cystitis)	1,491,440	8.7%	664,339	8.5%
Obstetric conditions	237,908	-5.7%	96,710	1.1%
Gynaecological conditions	737,865	7.2%	325,594	2.7%
Diabetes/endocrine conditions	279,201	8.1%	137,172	5.0%
Dermatological conditions	380,907	6.1%	167,734	8.2%
Allergy (inc anaphylaxis)	320,715	2.7%	140,118	3.6%
Facio-maxillary conditions	238,562	7.1%	101,657	3.7%
ENT conditions	1,069,271	7.6%	416,688	6.8%
Psychiatric conditions	663,467	10.6%	273,565	9.5%
Ophthalmological conditions	1,666,458	7.4%	790,772	18.5%
Social problems	189,169	7.0%	74,310	4.5%
Nothing abnormal detected	1,512,190	2.4%	753,439	4.4%
not classifiable/classified	39,846,209	-0.2%	3,297,835	2.0%


Table 6 : Frequency and Growth of Patient Diagnoses (Apr 2010 – Mar 2016)

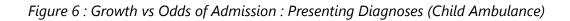
5.5. Table 7 provides information about the frequency and growth in attendance characteristics. Ambulance conveyed attendances have grown at a slightly faster rate than walk-in attendances. Winter, weekend and night time attendances grew at a faster rate than attendances at other times. Attendances requiring travel times in excess of 20 minutes grew at a faster rate than attendances requiring shorter journeys.

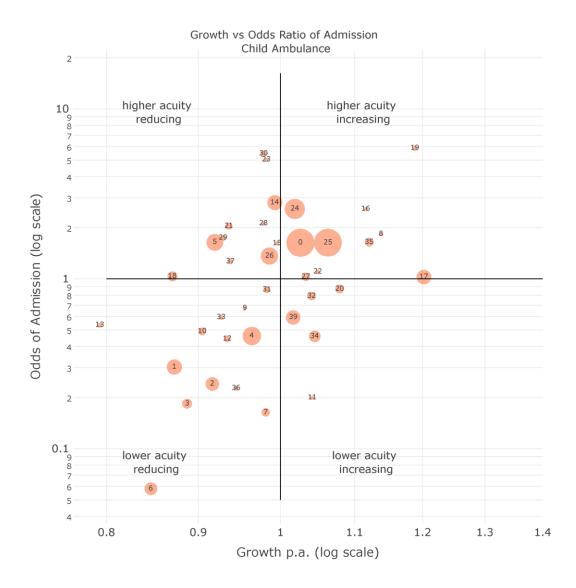
		all pro	oviders	provider s	subgroup
Characteristic	Subgroup	Frequency	Growth p.a.	Frequency	Growth p.a.
Arrival Mode	Ambulance	24,016,938	2.0%	6,639,897	2.7%
	Walk-in	57,967,815	1.0%	15,797,866	2.2%
Arrival Month	Summer	55,534,106	1.2%	15,227,829	2.3%
	Winter	26,450,647	1.6%	7,209,934	2.5%
Arrival Day	Weekday	58,795,743	1.3%	16,025,432	2.3%
-	Weekend	23,189,010	1.3%	6,412,331	2.5%
Arrival Hour	Day	66,254,281	1.2%	18,235,378	2.2%
	Night	15,730,472	1.7%	4,202,385	3.2%
Travel Time	0-4	7,911,206	-0.8%	1,997,063	0.4%
(mins)	5-9	22,023,377	-0.4%	5,492,136	1.1%
	10-14	19,631,124	0.5%	4,787,210	1.7%
	15-19	12,277,907	2.4%	3,453,148	2.2%
	20-24	6,885,846	3.6%	2,157,668	4.1%
	25-29	4,157,438	5.0%	1,328,702	3.5%
	30+	9,097,855	4.2%	3,221,836	5.2%

Table 7 : Frequency and Growth of Attendance Characteristics (Apr 2010 – Mar 2016)

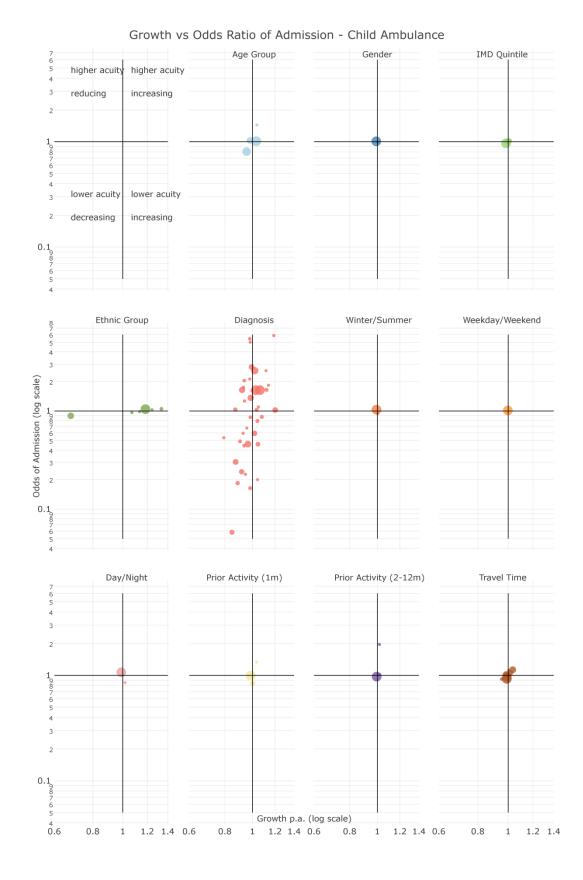
Figure 5 : Travel Time Profile of ED Attendances Apr 2010-Mar 2011 and Apr 2015-Mar 2016

5.6. Table 8 provides information about the frequency and growth of ED attendances and admissions via ED one month and 12 months prior to the index ED attendance. Attendances that were preceded by attendances that had not resulted in admission grew at the fastest rate


		all pro	oviders	provider s	subgroup
Characteristic	Subgroup	Frequency	Growth p.a.	Frequency	Growth p.a.
	Attended and				
Prior Activity	admitted	72,317,398	1.1%	19,959,448	2.1%
(1 month)	Attended not				
	admitted	3,575,912	4.9%	922,151	4.6%
	None	6,091,443	1.8%	1,556,164	3.8%
	Attended and				
Prior Activity	admitted	50,136,905	0.4%	13,846,380	1.3%
(2- 12 months)	Attended not				
	admitted	13,659,786	4.8%	3,671,287	5.1%
	None	18,188,062	1.2%	4,920,096	3.4%


Table 8 : Frequency and Growth of Prior Utilisation Characteristics (Apr 2010 – Mar 2016)

- 6. Changes in the acuity profile of ED attendances
 - 6.1. Section 4 sets out the factors that influence the odds of admission. We use this now as a proxy for clinical acuity, i.e. those attendances with high odds of admission are taken to be those with the greatest clinical acuity². By viewing this information along with the differing rates of growth of patient, diagnosis, attendance and prior utilisation characteristics (section 5) we can gain insight into the changing acuity profiles of ED attendances.
 - 6.2. We start with the 'diagnoses' characteristic given that this factor has the greatest influence on a patient's odds of admission within each of the 4 cohorts. Figure 6 below represents each of the 39 diagnoses for children conveyed by ambulance. Each diagnosis is represented by a circle in the chart. The number of attendances with the diagnosis is indicated by the circle area. The odds of admission³, as a proxy for acuity, are represented on the vertical axis and the growth in attendances with this diagnosis is represented on the horizontal axis. Points in the top right quadrant such as septicaemia (19), visceral injuries (16), nerve injuries (8), CNS conditions (24) and respiratory conditions (25) are therefore higher acuity diagnoses that are growing in frequency. Points in the bottom left quadrant such as sprain/ligament injuries (6), soft tissue inflammation (3) and lacerations (1) are in contrast lower acuity diagnoses; ENT (34) and electric shocks (11) and reductions in some higher acuity conditions; cerebro-vascular and gynaecological conditions. Nonetheless there remains a weak but significant association between growth and acuity (r=0.356, p=0.026), indicating casemix drift towards higher acuity attendances.
 - 6.3. Figure 7 extends this approach to all casemix-adjustment variables. Similar, although less striking patterns are seen in the age group and travel time covariates, with higher acuity attendances (the very young and very old and those with long travel times) increasing whilst other lower acuity attendances are reducing or increasing at a slower rate. The relationship between acuity and growth are less clear cut in the other covariates.
 - 6.4. Tables 9 12 classify each covariate for each of the 4 cohorts into the four quadrants. Characteristics in the 'higher acuity ↑' (dark orange) or 'lower acuity ↓' (light orange) quadrants indicate increased casemix acuity, whereas those labelled 'higher acuity ↓' (dark green) or 'lower acuity ↑' (light green) indicate reduced casemix acuity.


² We acknowledge that odds of admission is not a perfect proxy for acuity.

³ To allow comparisons across all variables and levels (rather than to an arbitrary reference level), odds ratios have been centred on 1 using the number of attendances with a given characteristic as a weighting variable.

1	Laceration	14	Poisoning (inc overdose)	27	Urological conditions
2	Contusion/abrasion	15	Near drowning	28	Obstetric conditions
3	Soft tissue inflammation	16	Visceral injury	29	Gynaecological conditions
4	Head injury	17	Infectious disease	30	Diabetes/endocrine conditions
5	Dislocation/fracture/joint injury/amputation	18	Local infection	31	Dermatological conditions
6	Sprain/ligament injury	19	Septicaemia	32	Allergy (inc anaphylaxis)
7	Muscle/tendon injury	20	Cardiac conditions	33	Facio-maxillary conditions
8	Nerve injury	21	Cerebro-vascular conditions	34	ENT conditions
9	Vascular injury	22	Other vascular conditions	35	Psychiatric conditions
10	Burns and scalds	23	Haematological conditions	36	Ophthalmological conditions
11	Electric shock	24	CNS conditions	37	Social problems
12	Foreign body	25	Respiratory conditions	39	Nothing abnormal detected
13	Bites/stings	26	Gastrointestinal conditions	0	not classifiable/classified

Figure 7 : Growth vs Odds of Admission : All Covariates (Child Ambulance)

Characteristic	Subgroup	Child Ambulance	Child Walk-in	Adult Ambulance	Adult Walk-in
Age Group	0	higher acuity ↑	higher acuity ↑	NA	NA
Age Group	1-4	higher acuity ↑	higher acuity ↑	NA	NA
	5-12	higher acuity ↓	lower acuity ↑	NA	NA
	13-17	lower acuity ↓	lower acuity ↓	NA	NA
	18-34	NA	NA	lower acuity ↑	lower acuity ↑
	35-54	NA	NA	lower acuity ↑	lower acuity ↑
	55-74	NA	NA	higher acuity ↑	higher acuity ↑
	75+	NA	NA	higher acuity ↑	higher acuity ↑
Gender	Male	higher acuity ↓	higher acuity ↑	higher acuity ↑	higher acuity ↑
	Female	lower acuity ↑	lower acuity ↑	lower acuity ↑	lower acuity ↑
IMD Quintile	Q1	lower acuity ↓	lower acuity ↑	lower acuity ↑	lower acuity ↑
	Q2	higher acuity \downarrow	lower acuity ↑	lower acuity ↑	higher acuity ↑
	Q3	higher acuity ↑	higher acuity ↑	higher acuity ↑	higher acuity ↑
	Q4	higher acuity ↑	higher acuity ↑	higher acuity ↑	higher acuity ↑
	Q5	higher acuity ↑	higher acuity ↑	lower acuity ↑	lower acuity ↑
	White	higher acuity ↑	higher acuity ↑	higher acuity ↑	higher acuity ↑
Ethnic Group	Asian	higher acuity ↑	lower acuity ↑	lower acuity ↑	lower acuity ↑
	Black	lower acuity ↑	lower acuity ↑	higher acuity ↑	lower acuity ↑
	Mixed	higher acuity ↑	lower acuity ↑	higher acuity ↑	higher acuity ↑
	Other	lower acuity ↑	lower acuity ↑	lower acuity ↑	lower acuity ↑
	Not known/stated	lower acuity ↓	lower acuity ↓	lower acuity ↓	lower acuity ↓

Table 9 : Acuity and Growth of Patient Characteristics

Table 10 : Acuity and Growth of Attendance Characteristics

Characteristic	Subgroup	Child Ambulance	Child Walk-in	Adult Ambulance	Adult Walk-in
Arrival Month	Summer	higher acuity↓	higher acuity ↑	higher acuity ↑	higher acuity ↑
	Winter	lower acuity ↑	lower acuity ↑	lower acuity ↑	lower acuity ↑
Arrival Day	Weekday	higher acuity↓	higher acuity ↑	higher acuity ↑	higher acuity ↑
	Weekend	lower acuity ↓	lower acuity ↑	lower acuity ↑	lower acuity ↑
Arrival Hour	Day	higher acuity↓	lower acuity ↑	higher acuity ↑	lower acuity ↑
	Night	lower acuity ↑	higher acuity ↑	lower acuity ↑	higher acuity ↑
Travel Time	0-4	lower acuity ↓	lower acuity \downarrow	lower acuity ↑	lower acuity ↑
(mins)	5-9	lower acuity ↓	lower acuity ↑	lower acuity ↑	lower acuity ↑
	10-14	lower acuity ↓	lower acuity ↑	lower acuity ↑	higher acuity ↑
	15-19	higher acuity↓	higher acuity ↑	higher acuity ↑	higher acuity ↑
	20-24	higher acuity ↑	higher acuity ↑	higher acuity ↑	higher acuity ↑
	25-29	higher acuity ↑	higher acuity ↑	higher acuity ↑	higher acuity ↑
	30+	higher acuity ↑	higher acuity ↑	higher acuity ↑	higher acuity ↑

Table 11 : Acuity and Growth of Prior	Utilisation Characteristics
---------------------------------------	-----------------------------

Character- istic	Subgroup	Child Ambulance	Child Walk-in	Adult Ambulance	Adult Walk-in
Prior Activity (1 month)	Attended and admitted	higher acuity ↑	higher acuity ↑	higher acuity ↑	higher acuity ↑
	Attended not admitted	higher acuity ↑	higher acuity ↑	lower acuity ↑	lower acuity ↑
	None	lower acuity ↓	lower acuity ↑	lower acuity ↑	lower acuity ↑
Prior Activity	Attended and admitted	higher acuity ↑	higher acuity ↑	higher acuity ↑	higher acuity ↑
(2-12	Attended not admitted	lower acuity ↑	lower acuity ↑	lower acuity ↑	lower acuity ↑
months)	None	lower acuity ↓	higher acuity ↑	lower acuity ↑	lower acuity ↑

Table 12 : Acuity and Growth of Presenting Diagnoses

Subgroup	Child	Child	Adult	Adult
	Ambulance	Walk-in	Ambulance	Walk-in
Laceration	lower acuity \downarrow	lower acuity ↓	lower acuity \downarrow	lower acuity \downarrow
Contusion/abrasion	lower acuity ↓	lower acuity ↓	lower acuity ↓	lower acuity \downarrow
Soft tissue inflammation	lower acuity \downarrow	lower acuity \downarrow	lower acuity \uparrow	lower acuity ↑
Head injury	lower acuity \downarrow	lower acuity ↑	lower acuity ↑	lower acuity \downarrow
Dislocation/fracture/joint	higher acuity ↓	higher equity	higher equity	
injury/amputation	nigher acuity v	higher acuity \downarrow	higher acuity \downarrow	lower acuity \downarrow
Sprain/ligament injury	lower acuity \downarrow	lower acuity \downarrow	lower acuity \downarrow	lower acuity ↓
Muscle/tendon injury	lower acuity ↓	lower acuity ↑	lower acuity ↑	lower acuity ↑
Nerve injury	higher acuity ↑	higher acuity ↑	lower acuity ↑	higher acuity ↑
Vascular injury	lower acuity ↓	lower acuity ↑	lower acuity \downarrow	higher acuity \downarrow
Burns and scalds	lower acuity ↓	lower acuity ↓	lower acuity \downarrow	lower acuity \downarrow
Electric shock	lower acuity ↑	lower acuity ↑	lower acuity ↑	lower acuity ↑
Foreign body	lower acuity \downarrow	lower acuity ↑	lower acuity ↑	lower acuity ↑
Bites/stings	lower acuity ↓	lower acuity ↓	lower acuity ↓	lower acuity \downarrow
Poisoning (inc overdose)	higher acuity \downarrow	higher acuity ↑	higher acuity ↑	higher acuity ↑
Near drowning	higher acuity↓	higher acuity ↑	lower acuity ↓	lower acuity ↑
Visceral injury	higher acuity ↑	higher acuity ↑	higher acuity ↑	higher acuity ↑
Infectious disease	higher acuity ↑	higher acuity ↑	higher acuity ↑	higher acuity ↑
Local infection	higher acuity \downarrow	higher acuity \downarrow	higher acuity \downarrow	higher acuity \downarrow
Septicaemia	higher acuity↑	higher acuity ↑	higher acuity ↑	higher acuity ↑
Cardiac conditions	lower acuity ↑	higher acuity ↑	higher acuity ↑	higher acuity ↑
Cerebro-vascular conditions	higher acuity \downarrow	higher acuity ↓	higher acuity \downarrow	higher acuity ↑
Other vascular conditions	higher acuity ↑	higher acuity ↑	higher acuity \downarrow	higher acuity \downarrow
Haematological conditions	higher acuity \downarrow	higher acuity ↑	higher acuity ↑	higher acuity ↑
Central nervous system conditions	higher acuity ↑	higher acuity ↑	higher acuity ↑	higher acuity ↑
Respiratory conditions	higher acuity ↑	higher acuity ↑	higher acuity ↑	higher acuity ↑
Gastrointestinal conditions	higher acuity \downarrow	higher acuity ↑	higher acuity ↑	higher acuity ↑
Urological conditions (inc cystitis)	higher acuity ↑	higher acuity ↑	lower acuity ↑	higher acuity ↑
Obstetric conditions	higher acuity \downarrow	higher acuity \downarrow	higher acuity ↑	higher acuity ↑
Gynaecological conditions	higher acuity \downarrow	higher acuity ↓	higher acuity ↑	higher acuity ↑
Diabetes/endocrine conditions	higher acuity \downarrow	higher acuity ↑	higher acuity ↑	higher acuity ↑
Dermatological conditions	lower acuity ↓	higher acuity ↑	lower acuity ↑	higher acuity ↑
Allergy (inc anaphylaxis)	lower acuity ↑	higher acuity ↑	lower acuity ↑	higher acuity ↑
Facio-maxillary conditions	lower acuity \downarrow	higher acuity ↑	lower acuity \downarrow	higher acuity ↑
ENT conditions	lower acuity ↑	higher acuity ↑	lower acuity ↑	higher acuity ↑
Psychiatric conditions	higher acuity ↑	higher acuity ↑	lower acuity ↑	higher acuity ↑
Ophthalmological conditions	lower acuity ↓	lower acuity ↑	lower acuity ↓	lower acuity ↑
Social problems	higher acuity \downarrow	higher acuity ↑	higher acuity ↑	higher acuity ↑
Nothing abnormal detected	lower acuity ↑	higher acuity ↑	lower acuity ↑	higher acuity ↑
not classifiable/classified	higher acuity ↑	higher acuity ↑	higher acuity ↑	higher acuity ↑

6.5. Similar results are found in child walk-in attendances, adults conveyed by ambulance and adult walk-in attendances (see appendix D), although the association between growth and acuity of diagnoses is notably stronger for adults conveyed by ambulance (r=0.656, p=0.000).

6.6. In conclusion, many of those characteristics that have grown at the fastest rate between 2010/11 and 2015/16 are also those that have the greatest odds of admission. In particular there has been faster growth in those aged under 5 and over 75 years, in those travelling more than 20 minutes to ED, in those with septicaemia, visceral injuries, CNS and respiratory conditions and those that had previously been admitted via ED; and these characteristics carry higher odds of admission. At the same time there have been reductions in the frequency of attendances for lacerations, contusions/abrasions, sprains/ligament injuries, burns/scalds and bites/stings which carry lower odds of admission.

- 7. Variation in Admission Thresholds between Providers
 - 7.1. Having established the factors that influence admission via ED and assessed whether these are changing over time, a logical next question is whether some hospitals admit patients at materially different rates than others having adjusted for the casemix of patients that present. This question is non-trivial and mirrors much of the debate about methodological bias in hospital standardised mortality rates. Mohammed⁴ sets out an approach to assess the validity of inter-hospital comparisons based on logistic regression models. We present here some preliminary work to assess whether the models described in section 4 above could be legitimately used compare casemix-adjusted provider admission thresholds via ED.
 - 7.2. The approach set out by Mohammed involves evaluating whether the relationship between each casemix-adjustment variable and the outcome variable (in this case admitted y/n) is constant across all providers. In practice this means assessing the strength of the interaction between the model covariate representing the provider and each of the other model covariates. Multiple instances of strong⁵ and statistically significant interaction terms indicate non-constant risks and questions the validity of inter-provider comparisons.
 - 7.3. For practical purposes we limit our assessment here to adult walk-in attendances (the largest of the 4 cohorts) in 2015/16 and to the interactions between provider and diagnosis, the strongest predictor of admission. We suggest that if risks are not constant across providers, then it would be particularly evident in this cohort and with this covariate.
 - 7.4. The models described in section 4 treat provider as a random effect and diagnosis is a fixed effect. Fitting models which include interactions terms between fixed and random effects requires considerable processing power and time. For the purposes of this assessment therefore, we treat provider as a fixed effect.
 - 7.5. Table 13 below shows the proportion of providers with large and significant interactions with each of the diagnoses. This clearly demonstrates widespread instances of non-constant risks and therefore rules out the potential to use the models described in section 4 to legitimately assess differences between providers in casemix-adjusted admission rates via ED.
 - 7.6. Non-constant risks can be caused by either differential measurement error⁶ or inconsistent proxy measures of risk⁷. It is unclear which of these mechanisms are at play here.

⁴ Mohammed MA, Deeks DJ, Girling A, Rudge G, Carmalt M, Stevens AJ, Lilford RL, Evidence of methodological bias in hospital standardised mortality ratios: retrospective database study of English hospitals, BMJ 2009;338:b780

⁵ odds ratios greater than 2 or less than 0.5

⁶ E.g. what one provider labels 'visceral injury' another labels 'laceration'.

⁷ E.g. some areas divert simple lacerations and contusions to an MIU, leaving only complex lacerations and contusions to be treated at the emergency department.

Diagnosis	% of Providers
Laceration	29%
Contusion/abrasion	33%
Soft tissue inflammation	50%
Head injury	41%
Dislocation/fracture/joint injury/amputation	18%
Sprain/ligament injury	63%
Muscle/tendon injury	36%
Nerve injury	16%
Vascular injury	32%
Burns and scalds	20%
Electric shock	3%
Foreign body	31%
Bites/stings	32%
Poisoning (inc overdose)	25%
Near drowning	0%
Visceral injury	23%
Infectious disease	60%
Local infection	22%
Septicaemia	0%
Cardiac conditions	22%
Cerebro-vascular conditions	69%
Other vascular conditions	91%
Haematological conditions	87%
Central nervous system conditions	10%
Gastrointestinal conditions	10%
Urological conditions (inc cystitis)	27%
Obstetric conditions	37%
Gynaecological conditions	32%
Diabetes/endocrinological conditions	18%
Dermatological conditions	65%
Allergy (inc anaphylaxis)	21%
Facio-maxillary conditions	41%
ENT conditions	80%
Psychiatric conditions	56%
Ophthalmological conditions	38%
Social problems	33%
Nothing abnormal datacted	E 90/
Nothing abnormal detected	58%

Table 13 : % of Providers with Large Significant Interactions with Diagnoses

8. Possible Further Work

- 8.1. This analysis indicates that lower acuity attendances have reduced in frequency or grown at a slower rate than higher acuity attendances, driving up the average acuity level of attendances. This trend is in line with national policy to divert lower acuity attendances to lower cost settings (e.g. walk-in centres, ambulance treat at scene, GP practices), for management via NHS Direct / NHS111 and with self-care advice. To corroborate this finding, NHS England may wish to seek direct evidence of increases in activity at these lower cost settings of the types that appear to have been diverted from EDs.
- 8.2. Cowling⁸ found that GP practices providing more timely access to primary care, generated fewer low acuity (self-referred discharged) ED attendances per registered patient having controlled for a range of other variables. Cowling's analysis was based on HES AE data, GP Patient Survey data and socio-demographic data from 2010/11. NHS England may wish recreate the Cowling model using 2015/16 data to provide insight into whether the characteristics of practices that influence the rate of low acuity ED attendances are more or less common in 2015/16 than in 2010/11 and whether the influence these factors have over the number of attendances has increased or diminished since 2010.
- 8.3. The HES A&E datasets used in this paper do not appear to be capable of supporting robust comparisons across providers of case-mix adjusted admission thresholds, even within the subset of providers that record diagnoses at consistently high rates. NHS England may wish to explore the issues that give rise to this limitation and identify opportunities to eliminate or minimise these issues as part of the roll-out of the new Emergency Care Dataset⁹.

⁸ Cowling TE, Cicil EV, Soljak MA, Lee JT, Millet C, Majeed A, Watcher RM, HHarris MJ, Access to Primary Care and Visits to Emergency Departments in England: A Cross-Sectional, Population-Based Study, PLoS One June 2013

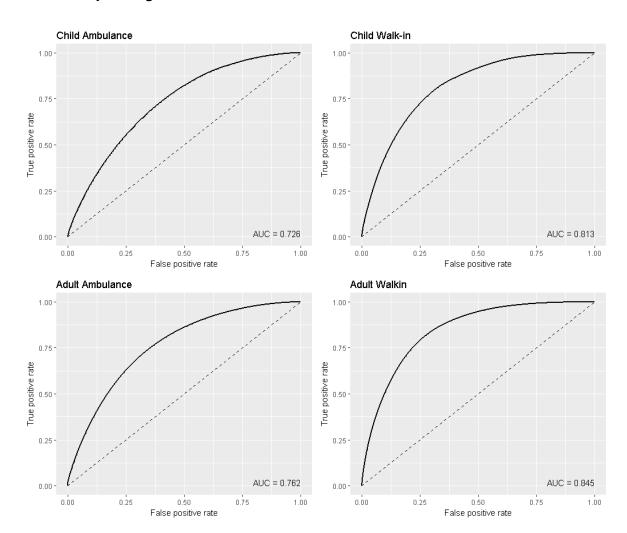
⁹ <u>https://www.england.nhs.uk/ourwork/tsd/ec-data-set/</u>

Appendices

- A Provider Trusts included in Models
- B Model Covariates and Coefficients
- C Model C Statistics, ROC curves and Calibration plots
- D Growth vs Odds of Admission

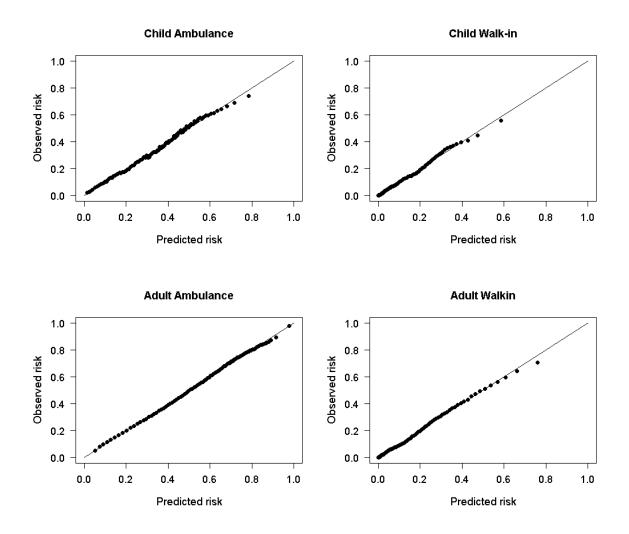
Appendix A- Provider Trusts included in Models

Torbay and South Devon NHS Foundation Trust Southend University Hospital NHS Foundation Trust **Dorset County Hospital NHS Foundation Trust** St Helens and Knowsley Hospital Services NHS Trust Alder Hey Children's NHS Foundation Trust Mid Cheshire Hospitals NHS Foundation Trust Luton and Dunstable University Hospital NHS Foundation Trust York Hospitals NHS Trust Airedale NHS Trust The Queen Elizabeth Hospital, King's Lynn, NHS Foundation Trust **Colchester Hospital University NHS Foundation Trust** Liverpool Women's NHS Foundation Trust Peterborough and Stamford Hospitals NHS Foundation Trust West Suffolk NHS Foundation Trust University Hospital Southampton NHS Foundation Trust Sheffield Teaching Hospitals NHS Foundation Trust Portsmouth Hospitals NHS Trust **Burton Hospitals NHS Foundation Trust** Northern Lincolnshire and Goole NHS Foundation Trust East Cheshire NHS Trust **Countess of Chester Hospital NHS Foundation Trust** George Eliot Hospital NHS Trust **Bolton NHS Foundation Trust** Kettering General Hospital NHS Foundation Trust Salisbury Health Care NHS Trust Doncaster and Bassetlaw Teaching Hospitals NHS Foundation Trust Moorfields Eye Hospital NHS Foundation Trust Birmingham Women's and Children's NHS Foundation Trust Hinchingbrooke Health Care NHS Trust Gateshead Health NHS Foundation Trust University College London Hospitals NHS Foundation Trust **Gloucestershire Hospitals NHS Foundation Trust** Northumbria Healthcare NHS Foundation Trust Ashford and St Peter's Hospitals NHS Foundation Trust South Tees Hospitals NHS Foundation Trust University Hospitals of Morecambe Bay NHS Foundation Trust North Tees and Hartlepool NHS Foundation Trust Maidstone and Tunbridge Wells NHS Trust Nottingham University Hospitals NHS Trust East Sussex Healthcare NHS Trust Mid Yorkshire Hospitals NHS Trust Lancashire Teaching Hospitals NHS Foundation Trust East Lancashire Hospitals NHS Trust Western Sussex Hospitals NHS Foundation Trust

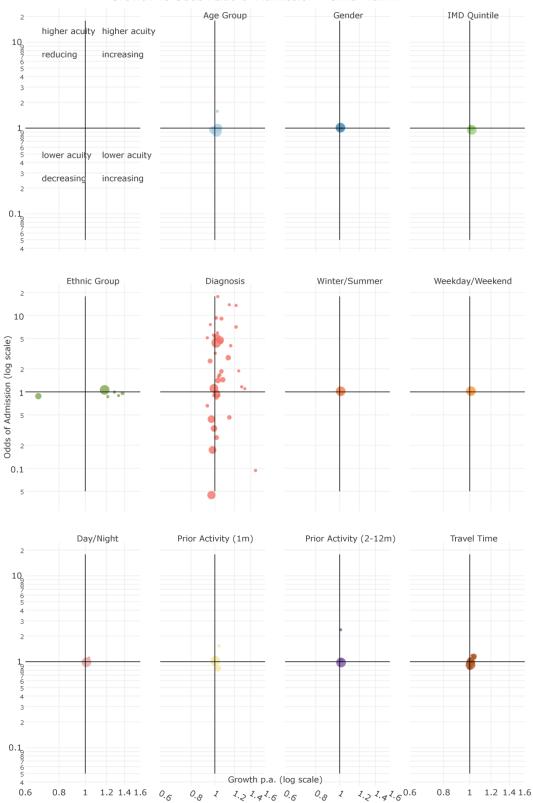

		Child Ambulance	Child Walk-in	Adult Ambulance	Adult Walk-in
		OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
	(Intercept)	0.62 (0.54-0.73)	0.28 (0.24-0.33)	1.16 (1.05-1.28)	0.37 (0.34-0.40)
Age	0	1.79 (1.75-1.82)	1.65 (1.64-1.67)	-	-
	1-4	1.25 (1.23-1.27)	1.06 (1.05-1.07)	-	-
	5-12	1.27 (1.25-1.30)	0.95 (0.94-0.96)	-	-
	13-17	ref	ref		
	18-34	-	-	ref	ref
	35-54	-	-	1.61 (1.60-1.62)	1.33 (1.32-1.33)
	55-74	-	-	2.87 (2.85-2.89)	1.96 (1.95-1.97)
	75+	-	-	4.55 (4.53-4.58)	2.83 (2.81-2.84)
Gender	Male	ref	ref	ref	ref
	Female	0.98 (0.97-0.99)	0.98 (0.97-0.98)	0.90 (0.90-0.91)	0.98 (0.97-0.98)
IMD	Quintile 1	ref	ref	ref	ref
	Quintile 2	1.04 (1.02-1.06)	1.05 (1.04-1.06)	1.00 (1.00-1.01)	1.01 (1.01-1.02)
	Quintile 3	1.05 (1.04-1.07)	1.06 (1.05-1.07)	1.02 (1.02-1.03)	1.01 (1.00-1.02)
	Quintile 4	1.07 (1.05-1.09)	1.08 (1.07-1.09)	1.02 (1.01-1.03)	1.01 (1.01-1.02)
	Quintile 5	1.07 (1.05-1.09)	1.11 (1.10-1.12)	1.00 (0.99-1.01)	1.00 (0.99-1.01)
Ethnicity	White	ref	ref	ref	ref
	Asian	1.01 (0.98-1.04)	0.90 (0.89-0.92)	0.84 (0.83-0.85)	0.84 (0.83-0.85)
	Black	0.94 (0.90-0.98)	0.84 (0.83-0.86)	0.98 (0.95-1.00)	0.90 (0.88-0.92)
	Mixed	0.99 (0.95-1.02)	0.94 (0.92-0.96)	0.99 (0.96-1.03)	0.93 (0.90-0.95)
	Other	0.92 (0.88-0.96)	0.82 (0.80-0.83)	0.90 (0.88-0.92)	0.81 (0.80-0.83)
	NKNS	0.86 (0.84-0.87)	0.83 (0.82-0.84)	0.79 (0.79-0.80)	0.74 (0.74-0.75)
Arrival	2010/11	ref	ref	ref	ref
Year	2011/12	0.91 (0.89-0.93)	0.81 (0.80-0.82)	0.91 (0.90-0.91)	0.87 (0.86-0.88)
	2012/13	0.91 (0.89-0.93)	0.81 (0.80-0.82)	0.83 (0.83-0.84)	0.80 (0.79-0.80)
	2013/14	0.86 (0.84-0.87)	0.79 (0.78-0.79)	0.80 (0.80-0.81)	0.75 (0.75-0.76)
	2014/15	0.84 (0.82-0.86)	0.74 (0.73-0.75)	0.78 (0.78-0.79)	0.74 (0.73-0.74)
	2015/16	0.78 (0.77-0.80)	0.65 (0.65-0.66)	0.77 (0.77-0.78)	0.70 (0.69-0.70)
Arrival	Mar-Oct	ref	ref	ref	ref
Month	Nov-Feb	0.91 (0.90-0.92)	0.94 (0.93-0.94)	0.98 (0.97-0.98)	0.98 (0.97-0.98)
Arrival	Weekday	1.00 (0.00-0.00)	1.00 (0.00-0.00)	1.00 (0.00-0.00)	1.00 (0.00-0.00)
Day	Weekend	0.96 (0.95-0.97)	0.92 (0.92-0.93)	0.97 (0.97-0.98)	0.85 (0.85-0.86)
Arrival	8am – 10pm	ref	ref	ref	ref
Hour	10pm – 8am	0.80 (0.79-0.81)	1.12 (1.11-1.13)	0.96 (0.95-0.96)	1.03 (1.03-1.04)
Prior	None	ref	ref	ref	ref
Activity	Attended and admitted	2.02 (1.96-2.08)	2.41 (2.37-2.45)	1.41 (1.40-1.42)	2.28 (2.26-2.30)
(1m)	Attended not admitted	1.04 (1.02-1.07)	1.08 (1.06-1.09)	0.77 (0.77-0.78)	1.01 (1.01-1.02)
Prior	None	ref	ref	ref	ref
Activity	Attended and admitted	1.34 (1.32-1.36)	1.49 (1.48-1.51)	1.34 (1.33-1.34)	1.67 (1.66-1.68)
(2-12m)	Attended and admitted	0.84 (0.83-0.86)	0.82 (0.81-0.82)	0.83 (0.83-0.84)	0.86 (0.86-0.87)

		Child Ambulance	Child Walk-in OR (95% CI)	Adult Ambulance	Adult Walk-in
Travel	0.4	OR (95% CI)		OR (95% CI)	OR (95% CI)
Time	0-4	ref	ref	ref	ref
(mins)	5-9	1.01 (0.98-1.03)	1.07 (1.06-1.08)	1.03 (1.02-1.04)	1.09 (1.08-1.10
	10-14	1.05 (1.02-1.08)	1.14 (1.13-1.16)	1.05 (1.04-1.06)	1.17 (1.16-1.18
	15-19	1.09 (1.06-1.12)	1.21 (1.19-1.22)	1.09 (1.08-1.10)	1.25 (1.24-1.26
	20-24	1.15 (1.12-1.18)	1.31 (1.29-1.33)	1.13 (1.12-1.14)	1.30 (1.29-1.31
	25-29	1.21 (1.17-1.25)	1.38 (1.35-1.40)	1.15 (1.14-1.16)	1.31 (1.30-1.33
Diagnosis	30+	1.23 (1.19-1.26)	1.34 (1.32-1.36)	1.07 (1.06-1.08)	1.23 (1.22-1.24
Jugnosis	Respiratory conditions	ref	ref	ref	ref
	not classifiable/classified	1.00 (0.98-1.02)	0.92 (0.91-0.93)	0.54 (0.54-0.55)	0.51 (0.51-0.52
	Laceration	0.19 (0.18-0.19)	0.09 (0.09-0.09)	0.10 (0.09-0.10)	0.06 (0.06-0.06
	Contusion/abrasion	0.15 (0.14-0.15)	0.04 (0.04-0.04)	0.10 (0.09-0.10)	0.02 (0.02-0.02
	Soft tissue inflammation	0.11 (0.11-0.12)	0.07 (0.07-0.07)	0.15 (0.15-0.15)	0.08 (0.08-0.09
	Head injury	0.28 (0.27-0.29)	0.20 (0.20-0.20)	0.19 (0.19-0.19)	0.14 (0.13-0.14
	Dislocation/fracture/joint inj / amputation	1.00 (0.98-1.03)	0.23 (0.23-0.24)	0.64 (0.64-0.65)	0.15 (0.15-0.15
	Sprain/ligament injury	0.04 (0.03-0.04)	0.01 (0.01-0.01)	0.07 (0.07-0.07)	0.01 (0.01-0.01
	Muscle/tendon injury	0.10 (0.09-0.11)	0.05 (0.05-0.06)	0.10 (0.09-0.10)	0.05 (0.05-0.05
	Nerve injury	1.12 (0.96-1.31)	0.24 (0.23-0.26)	0.40 (0.39-0.42)	0.19 (0.18-0.20
	Vascular injury	0.41 (0.30-0.56)	0.19 (0.16-0.21)	0.31 (0.30-0.33)	0.39 (0.38-0.42
	Burns and scalds	0.30 (0.28-0.32)	0.19 (0.18-0.20)	0.18 (0.18-0.19)	0.09 (0.09-0.09
	Electric shock	0.12 (0.09-0.17)	0.02 (0.02-0.02)	0.06 (0.06-0.07)	0.03 (0.03-0.03
	Foreign body	0.27 (0.25-0.30)	0.18 (0.17-0.18)	0.27 (0.26-0.29)	0.09 (0.09-0.10
	Bites/stings	0.33 (0.29-0.37)	0.14 (0.13-0.15)	0.12 (0.11-0.13)	0.08 (0.07-0.08
	Poisoning (inc overdose)	1.72 (1.67-1.77)	1.91 (1.87-1.95)	0.78 (0.77-0.79)	1.29 (1.27-1.32
	Near drowning				
		0.99 (0.79-1.24)	0.23 (0.20-0.27)	0.38 (0.34-0.44)	0.12 (0.10-0.14
	Visceral injury	1.58 (1.25-1.99)	0.39 (0.35-0.44)	1.58 (1.46-1.71)	0.52 (0.49-0.5)
	Infectious disease	0.63 (0.61-0.65)	0.59 (0.58-0.60)	0.78 (0.76-0.79)	0.55 (0.54-0.5)
	Local infection	0.63 (0.61-0.66)	0.53 (0.52-0.54)	0.81 (0.80-0.82)	0.47 (0.46-0.4
	Septicaemia	3.60 (3.24-4.00)	2.84 (2.70-2.99)	10.11 (9.68-10.56)	2.88 (2.80-2.9
	Cardiac conditions	0.53 (0.51-0.56)	0.84 (0.81-0.88)	0.88 (0.87-0.88)	1.56 (1.54-1.5
	Cerebro-vascular conditions	1.25 (1.18-1.33)	1.07 (1.01-1.13)	1.09 (1.08-1.11)	1.99 (1.96-2.03
	Other vascular conditions	0.67 (0.58-0.79)	0.67 (0.62-0.73)	0.60 (0.58-0.61)	0.65 (0.64-0.66
	Haematological conditions	3.08 (2.59-3.65)	2.89 (2.74-3.05)	1.25 (1.22-1.29)	1.11 (1.09-1.14
	CNS conditions	1.58 (1.54-1.61)	1.95 (1.90-2.00)	0.56 (0.56-0.57)	0.96 (0.95-0.97
	Gastrointestinal conditions	0.83 (0.81-0.86)	1.09 (1.07-1.10)	0.77 (0.77-0.78)	1.46 (1.44-1.47
	Urological conditions	0.63 (0.60-0.66)	0.95 (0.93-0.97)	0.51 (0.51-0.52)	0.76 (0.75-0.7
	Obstetric conditions	1.30 (1.13-1.49)	1.59 (1.49-1.70)	1.06 (1.03-1.10)	1.56 (1.53-1.58
	Gynaecological conditions	1.07 (0.98-1.16)	1.16 (1.11-1.21)	1.08 (1.06-1.10)	1.32 (1.30-1.33
	Diabetes/endocrine conditions	3.34 (3.10-3.59)	3.71 (3.53-3.89)	1.00 (0.99-1.02)	1.98 (1.94-2.02
	Dermatological conditions	0.53 (0.49-0.57)	0.39 (0.38-0.40)	0.37 (0.35-0.38)	0.19 (0.19-0.20
	Allergy (inc anaphylaxis)	0.49 (0.46-0.51)	0.35 (0.34-0.36)	0.22 (0.21-0.22)	0.21 (0.20-0.22
	Facio-maxillary conditions	0.36 (0.32-0.42)	0.33 (0.32-0.35)	0.22 (0.21-0.23)	0.21 (0.20-0.21
	ENT conditions	0.28 (0.27-0.29)	0.30 (0.30-0.31)	0.20 (0.20-0.21)	0.37 (0.37-0.38

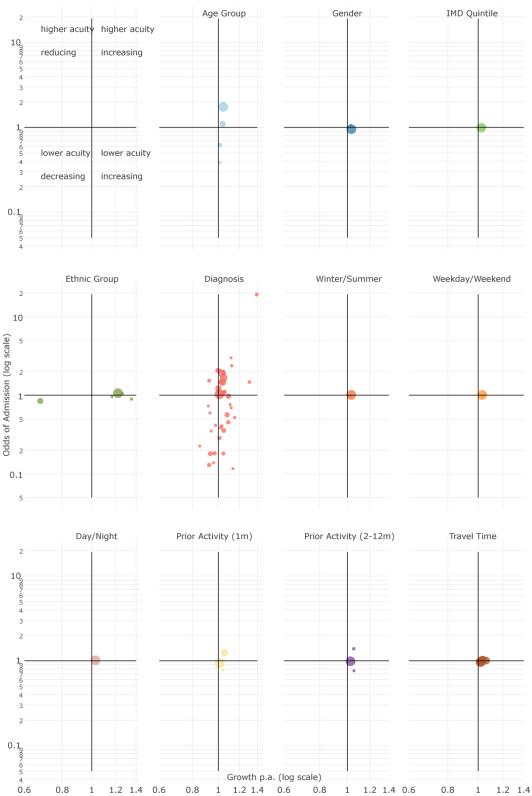
	Child Ambulance	Child Walk-in	Adult Ambulance	Adult Walk-in
	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
Psychiatric conditions	1.01 (0.96-1.05)	1.48 (1.44-1.53)	0.24 (0.24-0.24)	0.33 (0.32-0.33)
Ophthalmological conditions	0.14 (0.11-0.17)	0.10 (0.09-0.10)	0.07 (0.07-0.08)	0.02 (0.02-0.02)
Social problems	0.77 (0.71-0.85)	1.24 (1.15-1.35)	0.59 (0.58-0.60)	0.78 (0.75-0.80)
Nothing abnormal detected	0.36 (0.35-0.38)	0.30 (0.29-0.30)	0.30 (0.29-0.30)	0.36 (0.36-0.37)

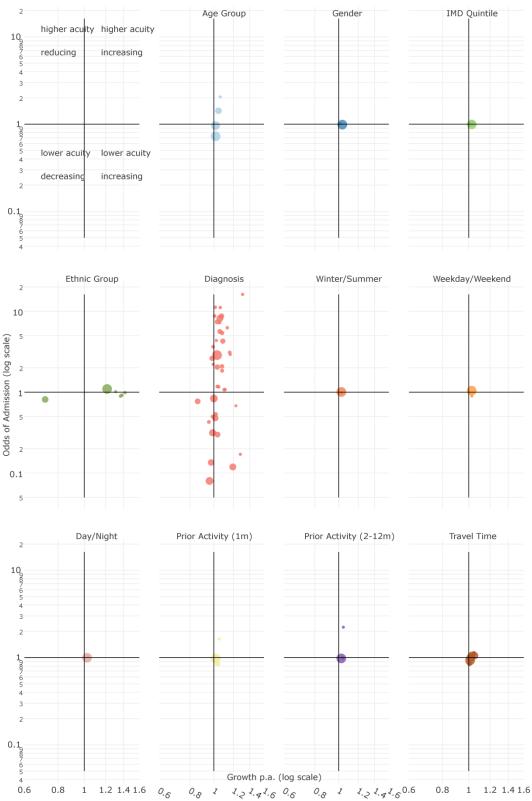

Model	C-statistic*
Child Ambulance	0.726
Child Walk-in	0.813
Adult Ambulance	0.762
Adult Walk-in	0.845

*Area under Receiver-Operating Characteristic (ROC) Curve



Receiver Operating Characteristic Curves


Hosmer-Lemeshow Calibration Plots


Appendix D - Growth vs Odds of Admission

Growth vs Odds Ratio of Admission - Child Walk-in

Growth vs Odds Ratio of Admission - Adult Ambulance

Growth vs Odds Ratio of Admission - Adult Walk-in